설명가능한 인공지능(XAI) 기술 동향과 데이터 산업의 시장 전망
  • 설명가능한 인공지능(XAI) 기술 동향과 데이터 산업의 시장 전망

설명가능한 인공지능(XAI) 기술 동향과 데이터 산업의 시장 전망

공유
정가
380,000
판매가
342,000
구매제한
최소 1개
구매혜택
할인 : 적립 마일리지 :
배송비
무료
택배
방문 수령지 : 서울특별시 금천구 가산디지털1로 196 에이스테크노타워10차 407호
상품코드
1000130099
제조사
하연
규격
286쪽 (A4)
ISBN
979-11-85497-25-9 (93560)
제조일
2021-01-12
구성

상품상세정보

공인인증서가 없어도 법인 및 연구비 (신용)카드로 결제가 가능합니다.

문의: shoppinghub@techforum.co.kr    전화: 070-7169-5396    www.shoppinghub.co.kr 


[PDF 주문안내]
- 고객명(소속/기관명)으로 주문하시기 바랍니다. (PDF는  메일로 발송됩니다.)

*업무시간(10:00~17:00) 이후 주문 건 및 휴일(주말, 공휴일, 임시공휴일 포함) 주문 건은 정상 영업일에 발송됩니다.

[계산서 발행안내]
-
사업자등록증 사본을 이메일(shoppinghub@techforum.co.kr) 로 보내주시기 바랍니다.
*현금결제(계좌이체, 무통장입금)건에 한해서 발행됩니다.

[견적서 및 거래명세서 발행안내]

- 이메일(shoppinghub@techforum.co.kr) 또는 주문 시 '요구사항'란에 메모를 남겨주시기 바랍니다.

 

제1장 설명 가능한 인공지능(XAI) 개요 및 기술 동향

1. 설명 가능한 인공지능(XAI) 기술 개요
  1-1. XAI(eXplainable AI) 등장 배경과 개념
    1-1-1. XAI 등장 배경
    1-1-2. AI의 급속한 확산에 따른 부작용
      (1) 인공지능의 불쾌한 골짜기(Uncanny Valley)
      (2) 딥러닝의 블랙박스 미스터리
        가. 딥러닝의 진화
        나. 현재 인공지능이 지닌 문제점, 블랙박스의 미스터리
        다. 인공지능의 대표적 오류 사례
      (3) 인공지능의 편향성(Bias) 문제
        가. AI의 의사결정 지원과 편향성(Bias)
        나. 데이터의 편향성(Bias)
        다. 데이터 편향 유형
        라. 인공지능의 편향성(Bias) 문제 해결 방안
      (4) 데이터 경제 시대, AI 슈퍼파워의 등장과 시장 독점
        가. 데이터 경제(Data Economy) 시대
        나. 데이터 소유와 독점
    1-1-3. 미래의 인공지능 알고리즘
      (1) AI 부작용이나 위험성에 대한 해결 방안
      (2) 미래 인공지능 알고리즘
    1-1-4. XAI 개요
      (1) XAI의 개념
      (2) XAI의 필요성
  1-2. AI 2.0 시대 XAI 기술 개요
    1-2-1. AI 2.0 시대
    1-2-2. 설명 가능한 인공지능의 작용 방식
      (1) 기존 학습 모델 변형: 심층신경망에 설명 가능성 부여하기 다윈AI 생성 합성(Generative Synthesis) 기술
      (2) DAPRA XAI 전략, 기본 설계부터 인간이 이해할 수 있는 구조로 신경망을 만드는 방식
        가. 심층설명학습(deep explanation)
        나. 해석 가능한 모델(interpretable models)
        다. 모델 귀납(model induction)
      (3) 학습모델간 비교
2. XAI 기술 동향 및 개발 현황
  2-1. XAI 프로세스 개요
    2-1-1. XAI 프로세스
    2-1-2. XAI의 접근 방법
  2-2. XAI 개발을 위한 기술적 접근
    2-2-1. 신경회로망 노드에 설명라벨 붙이기
    2-2-2. 의사결정트리를 이용한 설명모델 만들기
    2-2-3. 통계적 방법을 이용하여 설명모델 유추하기
  2-3. XAI 기대효과 및 시사점
    2-3-1. XAI 기대효과
      (1) 경계 사례와 데이터 편향성을 탐지·제거함으로써 성능 향상
      (2) 모델 정확성 및 성능 개선
      (3) 신뢰성 확보
    2-3-2. 시사점
3. 설명가능한 인공지능 알고리즘 및 XAI 개발 동향
  3-1. 설명가능한 인공지능 알고리즘
    3-1-1. 부분 의존 구성(Partial Dependence Plots, PDP)
    3-1-2. 개별 조건 예측(Individual Conditional Expectations, ICE)
    3-1-3. 민감도 분석(Sensitivity Analysis, SA)
    3-1-4. 계층별 관련도 전파법(Layer-wise Relevance Propagation, LRP)
    3-1-5. 일부 해석 모델(Local Interpretable Model-agnostic Explantion, LIME)
    3-1-6. 첨가 요인 민감도(Sharply Additive Explanations, SHAP)
  3-2. 활용 분야
    3-2-1. 금융/핀테크 분야 서비스
    3-2-2. 의료/헬스케어 분야 서비스
    3-2-3. 자율주행 자동차
    3-2-4. 제조
  3-3. XAI 산업 동향 및 기술 개발 현황
    3-3-1. XAI 기술 개발
      (1) 미국 국방성 산하 방위고등연구계획국(DARPA)
      (2) IBM
      (3) 구글
      (4) 페이스북(Facebook)
      (5) 심머신(simMachines,Inc)
      (6) 국내 XAI 연구
    3-3-2. XAI 기술의 특허 동향
4. 주요 AI 알고리즘 트렌드
  4-1. 제로샷 학습(zoro-shot learning)
    4-1-1. 제로샷 학습(zoro-shot learning) 개념
    4-1-2. 제로샷 학습(zoro-shot learning) 원리
    4-1-3. 제로샷 방법론
  4-2. 생성적 적대 신경망(Generative Adversarial Network)
    4-2-1. GAN(Generative Adversarial Network) 개요 및 학습 방법
      (1) GAN(Generative Adversarial Network, 적대적 생성 신경망) 개요 및 정의
        가. GAN 개요
        나. GAN 구조
           ① 학습데이터
           ② 생성자(generator) 네트워크
           ③ 판별자(discriminator) 네트워크
      (2) 적대적 학습방법
    4-2-2. GAN 응용 모델과 적용 사례
      (1) CGAN(Conditional GAN)
      (2) InfoGAN
      (3) Laplacian GAN
      (4) DCGAN(Deep Convolutional Generative Adversarial Networks)
      (5) DiscoGAN
  4-3. 강화학습(Reinforcement Learning)
    4-3-1. 강화학습(Reinforcement Learning) 개요
      (1) 강화학습(Reinforcement Learning)의 개요
        가. MDP(Markov Decision Process) 방식
        나. DQN(Deep Q-Network)
    4-3-2. 강화학습(Reinforcement Learning)의 특징
  4-4. 전이학습(transfer learning)
    4-4-1. 전이학습(transfer learning) 개요
      (1) 전이학습(Transfer learning) 개념
      (2) 전이학습 특징
    4-4-2. 전이학습 알고리즘


제2장 데이터 경제 시대 미래 비즈니스 생태계를 위한 데이터 활용
1. 데이터 경제 시대 미래 비즈니스 생태계
  1-1. 비대면 시대
    1-1-1. 포스트 코로나 시대 디지털 전환
    1-1-2. 비대면 시대, 인공지능(AI)과 데이터 아키텍처의 미래
      (1) 인공지능(AI)과 비대면
      (2) 비대면 시대, 인공지능(AI)과 데이터 아키텍처
  1-2. 데이터 경제(data economics) 시대 데이터 역할
    1-2-1. 데이터 경제 시대의 개요
    1-2-2. 데이터 오너십(data ownership)
      (1) 데이터 오너십(data ownership) 개요
      (2) 데이터 소유권 문제
        가. 데이터 소유권 개념
        나. 데이터 소유권에 대한 기준
        다. 데이터 거래
2. 인공지능 시대 데이터 활용
  2-1. 데이터 산업
    2-1-1. 데이터옵스(DataOps)
      (1) 데이터옵스(DataOps) 개념
      (2) 데이터옵스(DataOps)의 아키텍처
      (3) 데이터옵스의 운영 프로세스
    2-1-2. AI옵스(AIOps)
      (1) AIOps 개념
      (2) AI옵스 활용
      (3) AI옵스 시장 전망
  2-2. 글로벌 데이터 시장과 각국의 정책 현황
    2-2-1. 데이터 시장
    2-2-2. 데이터 경제 정책 현황
      (1) 미국
      (2) 유럽연합(EU)
      (3) 중국
      (4) 일본
      (5) 우리나라

참고문헌

 


그림목차 
[그림 1] XAI의 필요성
[그림 2] 불쾌한 골짜기(Uncanny Valley)
[그림 3] 다양한 스케일링 방법 비교
[그림 4] 신경망 기본 모델(a)과 다중 목표 최적화를 위한 진화 알고리즘 프레임워크(b)
[그림 5] 심층신경망의 구조와 훈련
[그림 6] 블랙박스 문제 분류
[그림 7] A Brief History of Machine Learning Models Explainability(성능 vs 설명)
[그림 8] 기계학습의 오류 원인
[그림 9] 분산형 AI 플랫폼 비전
[그림 10] AI 편향을 줄이기 위한 엔지니어링 원칙
[그림 11] 미래 기술의 시너지
[그림 12] 글로벌 산업별 데이터 활용
[그림 13] 글로벌 데이터센터 시장 규모
[그림 14] 데이터 경제의 가치 창출 체계
[그림 15] AI 기반 의사결정(Decision Making)
[그림 16] 현재의 인공지능과 XAI
[그림 17] eXplainable AI시스템의 표현
[그림 18] XAI 개발 과제
[그림 19] 블랙박스(Black box)로 인해 설명력이 낮아진 인공지능
[그림 20] XAI의 모델 해석 성과
[그림 21] XAI 개발을 위한 기술적 접근
[그림 22] XAI 프레임 워크
[그림 23] 역합성곱 신경망 구조 예시
[그림 24] 반복적인 모델 설명
[그림 25] AND-OR 그래프를 이용한 이미지 분류
[그림 26] AI의 블랙박스(Black-Box)와 설명가능한 AI
[그림 27] XAI 프로그램의 구조
[그림 28] XAI의 접근 방법
[그림 29] 인공신경망의 설명가능한 노드에 대한 레이블 예시
[그림 30] XAI의 모니터링과 분석 과정
[그림 31] 정확성과 설명력의 트레이드오프(trade off)
[그림 32] 설명가능한 AI 모델의 분류
[그림 33] XAI 기술 및 전략
[그림 34] AI 설명 가능성의 세 단계
[그림 35] LIME 이미지 분류
[그림 36] XAI 프레임 워크
[그림 37] 딥러닝의 사물인식 과정에 XAI가 적용될 경우
[그림 38] XAI에 대한 개념과 접근방식
[그림 39] 머신러닝 예측 모델에 설명 가능성 부여
[그림 40] XAI 과제
[그림 41] 딥러닝의 복잡성
[그림 42] Industrie 4.0을 위한 XAI
[그림 43] 설명가능한 AI 설명- 2단계 접근 방식
[그림 44] DARPA의 설명가능 인공지능 개발 방향
[그림 45] 기업들이 AI 도입을 망설이는 이유(중복 응답 가능)
[그림 46] 더 효율적인 CNN, EfficientNet
[그림 47] 설명가능한 딥러닝 프레임워크
[그림 48] Facebook의 기계학습 시스템
[그림 49] Cognilytica AI Positioning Matrix+ㅆTM
[그림 50] 딥러닝을 활용한 물체 감지 구조
[그림 51] 설명가능한 AI기술의 분야·국가별 특허 동향
[그림 52] 제로샷 학습(zoro-shot learning)
[그림 53] 전이학습(Transfer learning) vs 제로샷 학습(zoro-shot learning)
[그림 54] 구글 신경망 기계번역 시스템의 구조
[그림 55] 임베딩 기반 방법을 사용한 제로샷 학습
[그림 56] 생성 모델 기반 방법을 사용한 제로샷 학습
[그림 57] GAN을 사용하여 속성 벡터에서 이미지 특징 얻기
[그림 58] generative model의 분류
[그림 59] Fake and real images
[그림 60] GAN의 개념도
[그림 61] GAN의 학습 방법
[그림 62] Generative Adversarial Network
[그림 63] Generative model
[그림 64] 판별자(discriminator) 네트워크
[그림 65] Adversarial Nets Framework
[그림 66] Generative Network
[그림 67] Discriminator Network
[그림 68] CGAN의 얼굴인식 과정
[그림 69] CGAN(Conditional GAN)
[그림 70] InfoGAN 및 Vanilla GAN의 아키텍처
[그림 71] InfoGAN Implementation
[그림 72] Laplacian GAN
[그림 73] DCGAN Architecture
[그림 74] 기존 GAN Architecture
[그림 75] DCGAN
[그림 76] 선택기 신경망과 생성기 신경망
[그림 77] DiscoGAN 사용 예시
[그림 78] 강화학습(Reinforcement learning)
[그림 79] 환경과 상호작용을 통한 강화학습 구조
[그림 80] 강화학습 프레임워크(Reinforcement Learning Framework)
[그림 81] 로봇에 적용된 DQN
[그림 82] q-learning
[그림 83] 마르코프 결정과정 문제(Markov Decision Process, MDP)
[그림 84] 딥마인드 DQN 구조
[그림 85] 미분 가능 신경컴퓨터의 아키텍처 구조
[그림 86] 강화와 처벌
[그림 87] 강화학습 시스템 구조
[그림 88] 전이학습(transfer learning)
[그림 89] 전통 기계학습과 전이학습의 비교
[그림 90] 패턴인식(pattern recognition) 프로세스
[그림 91] PathNet과 Stepwise Pathnet의 비교
[그림 92] ICT impact realtionships
[그림 93] 2019년 디지털 혁신 트렌드
[그림 94] 멀티 클라우드 아키텍처
[그림 95] 세계 인공지능 헬스케어 시장 규모 2016-2023
[그림 96] 인공지능의 핵심 영역
[그림 97] 인공지능(AI) 및 빅데이터
[그림 98] 데이터 경제의 가치창출 체계
[그림 99] 데이터 경제(Data Economy) Framework
[그림 100] 하루동안 생산되는 데이터 양
[그림 101] 블록체인과 데이터 경제
[그림 102] 데이터 경제 시스템
[그림 103] 마이데이터(My Data)의 소유자
[그림 104] 데이터 소유자
[그림 105] 데이터 소유권, 보안, 애플리케이션의 관계
[그림 106] 데이터 값 주기
[그림 107] 개인 데이터 생태계
[그림 108] 데이터 소유권 및 관리
[그림 109] 데이터 거래 절차
[그림 110] 데이터옵스(DataOps) 개요
[그림 111] 데이터옵스(DataOps) 아키텍처
[그림 112] 데이터옵스(DataOps) 라이프사이클
[그림 113] 데이터 옵스를 사용한 통합 접근 방식
[그림 114] 머신러닝과 DataOps 사례
[그림 115] AIOps 접근 방식
[그림 116] IT 운영 관리에 통찰력을 제공하는 AIOps 플랫폼
[그림 117] AI옵스 플랫폼 시각화
[그림 118] AI옵스 플랫폼의 논리적 구조
[그림 119] 국내 빅데이터 및 분석 시장 전망
[그림 120] 데이터 수집 체계
[그림 121] 영국의 데이터 포털 사이트
[그림 122] 데이터 활용을 둘러싼 일본 정책 추진 현황
[그림 123] 한국판 뉴딜의 구조와 추진체계

 

 

표목차

[표 1] 인공지능 개발의 진화와 설명 가능한 AI 워크플로우
[표 2] 다양한 편향 요인이 반영되는 인공지능과 현재 머신러닝의 워크플로우 구조
[표 3] 기계학습 시스템 및 XAI 개요
[표 4] 인공지능의 편향 사례 및 데이터 편향(Bias)
[표 5] 편향(Bias)의 5가지 종류 및 AI시스템의 편향성 발견을 위한 프로세스
[표 6] 데이터 경제를 주도하는 GAFA
[표 7] 다양한 분야에서의 인공지능 오류
[표 8] DARPA의 AI Next Campaign 연구 주제
[표 9] XAI 연구 방향 및 신뢰성 있는 인공지능을 위한 프레임워크
[표 10] XAI 개요 및 운용 체계
[표 11] XAI 개발을 위한 기술적 접근 및 주요 과제
[표 12] XAI 기반 기술 분류와 설명가능한 인공지능(XAI) 예시
[표 13] DARPA의 XAI 효율적 설명의 평가지표
[표 14] 알파고(AlphaGo)의 진화
[표 15] 설명가능한 인공지능 적용 사례 및 모델 성능과 해석 가능성
[표 16] 의료분야에서 XAI 적용
[표 17] AI 오픈스케일의 흐름 및 강점
[표 18] AI기술의 취약점
[표 19] 머신러닝의 학습 방법
[표 20] 전이학습(Transfer learning) 워크플로우 및 응용 분야
[표 21] 의료 빅데이터 활용 강화 분야
[표 22] 데이터 가치사슬
[표 23] 데이터 가치 창출 및 데이터 경제 활성화 기대 효과
[표 24] 해외 데이터 경제 동향
[표 25] 빅데이터 관련 중국 정부 정책 및 주요 내용 정리

배송안내

- 배송지역: 전국
- 배송비: 무료입니다.(도서,산간,오지 일부지역 등은 배송비가 추가될 수있습니다.) 

- 본 상품의 평균 배송일은 3일입니다.(입금 확인 후) 설치 상품의 경우 다소 늦어질수 있습니다.[배송예정일은 주문시점(주문순서)에 따른 유동성이 발생하므로 평균 배송일과는 차이가 발생할 수 있습니다.]

- 본 상품의 배송 가능일은 3일 입니다. 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다.)

 * PDF파일 주문 시 자료는 등록하신 이메일로 발송해 드립니다. 

 * 주문 시점으로 오전, 오후 1회 일괄 발송합니다.

 * 업무시간(10:00~17:00) 이후 주문 건 및 휴일(주말, 공휴일, 임시공휴일 포함) 주문 건은 정상 영업일에 발송됩니다.

 

 

수기 결제 서비스

온라인 신용카드(법인, 연구비 카드 등) 결제가 안 되실 경우 고객센터(070-7169-5396)로 전화 주시면 '수기 결제 서비스'를 안내 해드립니다.  수기 결제 서비스 절차는 아래와 같습니다.

 

① '수기 결제 서비스' 요청

② ‘최소한의 신용카드정보’를 전달 받아 결제 진행

③ 결제완료 

 

 

ARS 결제 서비스
온라인 신용카드(법인, 연구비 카드 등) 결제가 안 되실 경우 고객센터(070-7169-5396)로 전화 주시면 'ARS 결제 서비스'를 안내 해드립니다.
ARS 결제 서비스 절차는 아래와 같습니다.
① 'ARS 결제 서비스' 요청

② 고객님 휴대폰으로 'ARS 결제' 문자 발송

③ ARS 전화 연결

④ 카드번호,  카드유효기간(MM/YY),  법인카드는 사업자번호 / 개인카드(법인기명카드)는 생년월일,  비밀번호(앞두자리) 입력

⑤ 결제완료

 


계산서

- 현금결제(계좌이체, 무통장입금)건에 한해서 발행됩니다.
- 계산서가 필요하신 분은 이메일 (shoppinghub@techforum.co.kr) 또는 주문시 '전하실 말씀'란에 메모를 남겨주세요.

- 사업자등록증 사본을 이메일(shoppinghub@techforum.co.kr) 로 보내주시기 바랍니다.

- 요청하신 계산서는 등록하신 메일로 발송됩니다.

 

 

거래명세서
- 거래명세서가 필요하신 분은 이메일 (shoppinghub@techforum.co.kr) 또는 주문시 '전하실 말씀'란에 메모를 남겨주세요.
- 사업자등록증 사본을 이메일(shoppinghub@techforum.co.kr) 로 보내주시기 바랍니다.
- 요청하신 거래명세서는 등록하신 메일로 발송됩니다.

 
견적서
- 견적서가 필요하신 분은 도서 목록을 이메일(shoppinghub@techforum.co.kr) 로 보내주시기 바랍니다.
- 요청하신 견적서는 등록하신 메일로 발송됩니다. 

교환 및 반품안내

- 주문하신 도서가 품절 및 절판등의 사유로 발송할 수 없을시 에는 대금을 환불해 드립니다.
- 도서의 파손이나 불량으로 인한 교환을 요청하실 경우에는 재발송하여 드립니다. (택배비 무료)
* PDF파일 주문 건은 '디지털상품' 특성 상 전송 후 환불처리가 불가하오니 신중히 검토 후 주문 부탁 드립니다.

AS안내

- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.

- A/S는 판매자에게 문의하시기 바랍니다.

이미지 확대보기설명가능한 인공지능(XAI) 기술 동향과 데이터 산업의 시장 전망

설명가능한 인공지능(XAI) 기술 동향과 데이터 산업의 시장 전망
  • 설명가능한 인공지능(XAI) 기술 동향과 데이터 산업의 시장 전망
닫기

비밀번호 인증

글 작성시 설정한 비밀번호를 입력해 주세요.

닫기

장바구니 담기

상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?

찜 리스트 담기

상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?

상단으로 이동